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ABSTRACT

Wave propagation in the composite region of a wedge which
leads into a duct was considered where mixed boundary conditions
were imposed. The problem was reformulated as an integral equation
where, instead of the free-space Green's function being used as the
Kernel function, the Green's function for the wedge region was used.
This permitted considerable simplification, and a Fredholm integral
equation of the second kind was obtained where the region of integra-
tion is merely a plane and is valid for any value of the wave number.
For small values of the wave number the boundary integral equation
may be solved iteratively, and the solution is given as a Neumann
series.
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LOW-FREQUENCY SCATTERING IN THE COMPOSITE REGION
OF A WEDGE AND TWO PARALLEL PLATES

INTRODUCTION

The problem of wave diffraction in the region bounded by a wedge was considered
in 1896 by Sommerfeld (1, 2), who obtained the two Green's functions for a wedge of
angle n/mir (n, m integers) using a Riemann surface of n sheets. In 1915 MacDonald (3)
was the first to obtain expressions for the two Green's functions for a wedge of any
angle by using the hard analysis characteristic of nineteenth-century mathematical physics.
In 1954 Oberhettinger (4) obtained the two Green's functions for a wedge of any angle
by using more conventional analysis. Williams (5, 6) and Lauwerier (7) used integral
representations and reduced the problem to the solution of a potential problem. For a
more extensive review of the literature published on this topic since its first solutions, see
Oberhettinger (4, 8), Bouwkamp (9), and Williams (10).

An outgrowth of this problem is the problem of propagation in the composite region
of a wedge leading into a duct; this is solved in this report for mixed boundary
conditions (i.e., Dirichlet on one portion of the surface and Neumann on the remainder).
Although this problem is important both in radar theory and underwater linear acoustics,
except for reports based on experiments, very little has been written on this problem.
Kearsley (11) and Wait (12) give some treatment of the subject; however, the problem is
still far from being satisfactorily resolved. The approach used in this report is first to
solve Helmholtz's equation for the region inside a wedge with mixed boundary conditions.
This is done in the next section by following the procedure that Oberhettinger (4) used
to obtain the two Green's functions to the Dirichlet and the Neumann problems. In the
third section, the composite problems for both a line source and a point source are re-
formulated as integral equations using the Green's identities. Instead, however, of using
the traditional free-space Green's function as the kernel function, the corresponding
Green's functions for the wedge are used. Considerable simplification results, whereby a
Fredholm integral equation of the second kind is obtained for each problem. In the
fourth section, both boundary integral equations are solved by direct iteration, and the
solution in each case is given as a Neumann series which converges for small, but non-
zero, values of the wave number.

THE GREEN'S FUNCTION FOR A WEDGE

In this section the Green's functions for a wedge with mixed boundary conditions
are obtained for both line and point sources. The procedure used is the same as that
employed by Oberhettinger (4) to obtain the two Green's functions corresponding to
Neumann and Dirichlet boundary conditions.

A cylindrical polar-coordinate system (r, , z) is chosen such that the z axis is along
the edge of the wedge and the wedge occupies the region
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where Q2 is any angle. Denote the region inside the wedge by W; i.e.,

W = (r,, z) 0<0<921.

Let P be a point with coordinates (r, 4, z). The distance between two points P and P0

will be denoted by R(P, PO) or simply R and

R(P, PO) ={r2 +r2 - 2rro Cos ( _ 0) + (Z -Zo)21(1)

Line Source

Consider first the two-dimensional case of a cylindrical incident field which radiates

outward from a line source passing through the point P0 and is parallel to the edge of

the wedge. We wish to solve the following problem for the Green's function g:

g(p, Po) =gi(p, Po) +gs(p, P) (2)

(V2 + k2 )gs(P, P0 ) = 0 for PeW

g(P, PO) = 0 for 0 = Q

g(P, PO) = 0 for = 0

lim r1 /2 (a ik)gs =0,

where gi(P, P0 ) = H) (kR). HM1) (kR) is a Hankel function of the first kind of order
zero and has the following integral representation Ref. 13, p. 106:

H(')(kR) = 24i r Ki.(7r)Ki (yro) cosh [x(7r - - )]dx, (3)
0

where y = - ik and K,(¢) is a modified Hankel function defined by

7r

Kp( )= 2 i7re 2 Hl)(it). (4)
2 

Assume the following representation for g8:

gS(P, Po) = - Kix(yr)Kix(yro)[fi(x)eO x + f2 (x)e ]dx. (5)

2
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The functions f (x) and f 2 (x) may be determined from the boundary conditions. If =,
0, then

g(p, Po)= 0 

and

f1 (x) - f2(X) =-sinh [7r - 00)] . (6)

If 2 = , then g(P, PO) = 0 and

en Xfi (x) + eIxf 2(x) =cosh [x(7r - + 00)]. (7)

Solving Eqs. (6) and (7) for f and f2 , after some simplification we obtain from Eqs. (3)
and (5)

g(P, P0 ) 4fKix(yr)Kix(yro) hirx{sinh [x(E2 - - o0 )]
0

+ sinh [x( - + )] } dx. (8)

To obtain a more convenient representation for g we convert the one-sided integral
in Eq. (8) to a two-sided integral which can be evaluated by residue theory. From Ref.
13, p. 66 we have

Kv(G) =-2[sin 7rV] 1 IVr v¢]*(9)

Substituting Eq. (9) into Eq. (8) and observing that i sinh rx/sin rix = 1, we obtain

2~~~~~~ Ssinh [x(Q - - 00 1)] + sinh [x(Q - + )] 
g(P, Po)= fKix(-Yr)Iix(Yro) { cosh Qx 1dx

+2 fKx(,yr)Ii (yr) {sinh x( - - 001)] + sinh [x( - + 001)] d
+ r f i(rIi -r~ cosh Q2xJd

0
(10)

for r < r and the same expression with r and r interchanged if r > r. In the last
integral in Eq. (10), replace x by -x and obtain

r ('yr)I~j,(yr0 ) sinh [x(Q - - 00 )] + sinh [x( - + )]df { cosh Qx I dx

0 sinh [x( - - 00 1)] + sinh [x( - 0 + 00 1)l
- f Kix(,Yr)Iix(yr 0 ){ cosh&Žx fdx, (11)



JOHN F. AHNER

where from Ref. 13, p. 67 we have

Ki, (yr) = K-i.x(yr). (12)

Substituting Eq. (11) into Eq. (10), we obtain

2 r I sinh [x(2.- 10 - 001)] + sinh [x( - q + 00 1)11
g(P, P 0) =- TJs Kix(yr)-(yro) cosh 2x J dx.

(13)

We can obtain an infinite series representation for g from Eq. (13) by residue theory.
Close the path of integration in Eq. (13) in the upper half-plane by a half-circle with
radius (n + 1)1r/92, apply the residue theorem, and then let n tend to infinity through
nonnegative integers. The only poles of the integrand of Eq. (13) within the closed con-
tour are simple and occur at

x 2 92 n =0,1,2 (14)

It can be shown that the residue of the integrand at x = x is

1 (osr(n + 1/2)ir 1 01
Q~ [(n+l/2),r] /(,y)I[(n+1/2) 1 / (rO) ff

+ cos[(nl A2 )7 , 0 + 0oij } (15)

and consequently

A~P Po) =_8i K[(n+1/2), I/s (,yr)I(+/)r/ (yr°)
n=O

X cos (n + 1/2)7r ¢ cos (n + 1/2)7r (16)

From Ref. 13, p. 66
i 1 

= e 2 (i) (17)

If we replace y by -ik and let rn = (n + 1/2)7r/92, it follows from Eqs. (4), (16), and
(17) that

AP, Po) = - r COS TO COS TAHM(kr>) (kr<) (18)
n=O

From Ref. 14, p. 265 we have that
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2m+-rnD
(1) = ~~~~~- krr) HQ2

1 (k r2 +r.2 
H(kr>)J kr<) Z 2 r'0) 2Tn)+1kr. (19) (19)Trn >r II m! r(m + n + ) ( +) 2 m +,n m.M=0 ~ ~ ~ ~ +rnor-

Thus

/1 \2m+1n
°= krro) H(M(k r 2+r 2 ) (9

g(p, Po) - L COS Tn COS Tn¢00 Y V- . (20)n=0 m=0 m!r(m + T+1) ( )2m+T

Point Source. Consider the three-dimensional case of an incident spherical wave emitted
from a point source at P. The problem we wish to solve is the same as the one in Eq.
(2) except that here the incident field G is represented by eRIR, and the scattered field
Gs satisfies a three-dimensional radiation condition; i.e., in terms of spherical coordinates

limp( - ik) Gs ='O, 0 < • ,

where p = /r 2 + z 2 . From Ref. 13, p. 487 and Ref. 15, p. 827 we have

eik = i Js H(J)(t/>~)eicIZ-ZOlde (21)
R 2 -- 

where t = [r2 + r - 2rro cos (0 - 0)] 1/2. Thus it is seen that the incident field result-0
ing from a point source in a cylindrical geometry is obtained from an incident field for a
line source by replacing k by Vk2 _ a 2, multiplying by (i/2 exp (- ilz - zo ) and in-
tegrating with respect to a from -oo to oO. Similarly, the total field resulting from a point
source can be obtained from the total field resulting from a line source and from Eq. (18);
thus,

2iri 0G(P, P) =0 cos To cos TnOos (22)
n=0

where

s7 = J(r< k2 a2)H3l)(r>Vk2 ea2)&lzOzda. (23)

From Ref. 14, p. 270 it can be shown that

(1 2m _+_n

00~ krr0 h~l) (k, ,r.2 r .. 2
S. = 2k (2 °/ 2m+rn +O+ (24)

m=0 m(m +Tn + ) r2 + + ( z) )2m+T

where h) is a spherical Hankel function. Substituting Eq. (24) into Eq. (22), we get
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G(P, PO) 4irki cos T0 cos r=2 L A
n=0

/1\m+'rn
X c ( krro)

m=0 m!(m + n + 1)

h(N2l (k r2 +r2 +(z-z°))

( /r2 +rO +(zz)2) 2m+Tn

COMPOSITE REGION

In this section two scattering problems are considered, one corresponding to a line
source and the other corresponding to a point source. We first set forth the notation to
be used. We next formally state the two problems, and finally we obtain integral
representations for them.

Consider the composite region formed by the intersection of a wedge of angle
,Q < r/2 and two parallel plates, where one plate coincides with one surface of the wedge
and the second plate intersects the other face of the wedge. Choose a cylindrical coordi-
nate system (r, , z) so that the apex of the wedge is the z axis and its faces are at = 0
and = 2, where the surface corresponding to = is the one which coincides with
one of the plates. Suppose the plates are a distance a apart. This situation is shown in
Fig. 1. Denote the region formed by the intersection of the wedge and the plates by V,
and let S denote the surface corresponding to 0 = ; let S2 denote the surface
corresponding to = 0; and let S3 denote the surface corresponding to a = r sin (2 -
O < < . Let V denote the region exterior to V and its boundary.

__________ ~~~~~~~~SI

S3

Fig. 1-The composite Region

In the two problems considered in this section, we wish to find the total field
u(P, P) where P is a point source such that

u(P, P) = u(P P) + u'(P, P)

(V2 + k 2)us(P, P 1) = 0 for PeV

u(P, P1 ) = 0 for PS(2

(25)

6
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anu(P, P) = forPeS2 US3 (Cotiue) an

(Continued)

and u(P, P) satisfies a radiation condition at infinity. The function uT is a knownn
incident field. For one of the problems the incident field results from a line source
through the point P1 eV and parallel to the z axis. For the other problem the incident
field is emitted from a point source located at P1 e V. For notational convenience and to
avoid unnecessary confusion, let u(P, P) represent the total resulting from the line source
and let u(P, P) and u(P, P) denote the incident and scattered fields, respectively. Let
U(P, P) denote the total field resulting from the point source and let U(P, P) and
(S(P, P) denote its incident and scattered fields, respectively. Thus u(P, P) = Ml)(kR)
and U(P, P1 ) = eikRIR. The radiation condition that u satisfies is

lInn( ik s 0, (27)

where x = r cos ( - ); and if p = x z 2, Us satisfies

lim P1/2 ( ikUS=0 (28)

We now reformulate the problem in Eq. (26) as an integral representation both for u
and U. Since the argument is essentially the same in both instances, we shall give only
the derivation for U and merely state the corresponding results for u. From its construc-
tion the function G(P, PO) given in Eq. (25) satisfies

(V2 +k 2 )G - 4r6(P-Po) (29)

for (P PeW), where W denotes the wedge region and 6 is the Dirac delta function. We
see that Eq. (29) is valid in any subregion of W and in particular for (P PeV) since
VCW. Also,

(V2 + k 2 )U- 47r6(P - P1 ) (30)

for (P, PeV). The singularity of G for P near P is like eik P-PoIp - P0 and the
singularity of U for P near P is like e ik PPlI/IP - P1 1. From Green's identities (e.g.,
Ref. 16, p. 256), we have for PeV

1rr an a- 47 J JU(PP1 ) h-p G(P,P0 )-G(P,P0 ) aa U(PP1 )}p

U(PoP 1) -G(P1 , Po) PoeV

a(PO)
41 U(Po, P1 ) - G(P1 , P) PoeS (31)

-G(P1 ,Po) PoeVe

NRL REPORT 7613 7
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where
3

S= USi
i= 1

and So is that portion of the surface of a sphere of infinite radius centered at the origin
which intersects V. The unit normal fi is directed into V, and is not uniquely defined at
all points of S; however,

3s= u Si
i= 1

and a unique normal is defined on each Si. It will become apparent later why we chose
G as our kernel function rather than the more traditional free-space Green's function.
The function a(P0) is defined by

U(Po) -lim - -dS (32)f* Jan R

where 1 = (Be(Po)nv); that is, the boundary of that part of a ball of radius e and
center P0 lying in V. (P0) is a measure of solid angle (Ref. 17), and when P0 is on a
smooth portion of S, a(P0) = 2; when P0 is on the z axis, a(P0 ) = 2; and when P is
along the other edge (i.e., when r = a csc Q, = 0), a(P0) = 2( - 2). The total field
U satisfies a radiation condition, since both the scattered field and the incident field
satisfy this condition. Also G satisfies a radiation condition, and it follows that the
boundary integral in Eq. (31) over S_0 vanishes.

It is seen from Eq. (31) that if the total field is known on S, it is known everywhere
in V. Those portions of S which are not smooth (i.e., the two edges) are of measure
zero and consequently do not contribute in the determination of the total field in V.
For this reason we shall consider only the boundary integral where the field point is on a
smooth portion of S. From Eq. (31) we have

- 4 i~t{U(P, P) a G(P, P 0 ) - G(P, P) a U(P, P0)}dS= 2 U(P0 , P1 ) - G(P1 P).

(33)

Now G(P, P0 ) satisfies the boundary conditions in Eq. (2), thus,

anG(PP0)= 0 eS1 an (P, P0 )=O0 PeS2. (34)

Also, U(P, P1) satisfies the boundary conditions in Eq. (26),

U(P, P 1) = 0 PeS1 and a U(P, P1 ) = PeS2 US3. (35)

8
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From Eqs. (33), (34), and (35) we have

U(P 0 P1)+ J U(P, P1) a G(P P)dS= 2G(P P). (36)
01 i) 7rS 3 np

The boundary integral equation in Eq. (36) is a Fredholm integral equation of the second
kind where the region of integration is only a half-plane. It is now clear why we chose G
as our Kernel function instead of the free-space Green's function. If the latter were
chosen, then our boundary integral in Eq. (33) would involve both U(P, P) and its nor-
mal derivative, which is a considerably more difficult integral equation to solve.

An integral representation for u(P, P) similar to the one in Eq. (31) can be ob-
tained by using Green's identities and choosing g(P, P) defined in Eq. (20) as the Kernel
function. Let A denote a plane which is perpendicular to the z axis and intersects the
line source at the point P. Let A VfA, A = enA, C = inA, and i = 1,2,3,o. It
can be shown that

1 fc {u(P P 1 ) Ag(P Po) -g(P Po) a u(P P)} dSp41 f an '0 an

u(Po, P) -(Pi, P) PoeA

- 2ir u(P0, P1 ) -g(P1 , P0 ) POeC (37)

y- g(P, PO) PoeAe,

where

'(Po)= lim a a QnRdS. (38)
e fO an

EE>

In Eq. (38), e = a(BnA); that is, the boundary of that part of a circle of radius e and
center P lying in A. The boundary integral over C, vanishes as a result of both u and g
satisfying radiation conditions at infinity. It also may be argued that we need only con-
sider the integral equation for P on a smooth portion of

3
C= U Ci

i=1

to obtain the total field u in A. For P on a smooth portion of C, ji(P0 ) = , and we
have

J f{u(P Pi) a g(P, Po) g(P Po) a u(P P)} dSp= - u(P, P1 ) -g(P 1 , PO). (39)
C

This is analogous to the integral equation in Eq. (33) for U. From Eq. (2) we have that
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g(P PO) = 0, PeCl; - g(P, PO) = OX PC2

and from Eq. (26) we have

u(P, PI) = 0 PeC1 and a u(P P1 ) = PEC2 UC3 .

Substituting Eqs. (40) and (41) into Eq. (39), we obtain

u(PO PI) - 2i1vu(P, P0 an
1i f a

C3

LU=-1 {U(P,Pl)a
2rS 3 n

G(P, PO)dSp

and

Mu= 1 J u(PP 1 ) g(PPo)dSp,

C3

the integral equations in Eqs. (36) and (42) may be written

(I - L)U = 2G

and

(I -M)u = 2g,

where I is the identity operator.

OBTAINING THE SOLUTION TO THE PROPAGATION PROBLEMS AS A
NEUMANN SERIES

With L and M as defined in Eqs. (43) and (44), we show in this section that

U= 2 LnG and u = 2 Mng
n=0 n=0

are the solutions to the two scattering problems formulated in the previous section
everywhere on S except at the two vertices of the composite region. Once the solutions
are known for this portion of S, from the integral representations in Eqs. (31) and (37),
they are also known in V.

It is known (e.g., Ref. 18, p. 173) that if L and M are linear operators on a Banach
space and if the above Neumann series converge in the norm of the Banach space, then
the series converge to the unique solution of Eqs. (45) and (46). To discuss the con-
vergence of the two series we must define the function spaces, show that L and M are
operators in the space, and establish a suitable norm.

(40)

If

(41)

g(P, PO)dS = 2g(Po, P1 ). (42)

(43)

(44)

(45)

(46)
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Let T denote the set of points on S which are not on either of the two vertices of S.
It is noted that the integral equations in Eqs. (45) and (46) are valid only for POeT.
First let us discuss the problem corresponding to the point source. Let C(S) and C(T)
denote the spaces of complex continuous functions, bounded and continuous as P0 tends
to infinity, which are defined on S and T, respectively. Since we desire the infinite series

U=2 LnG
n=0

to converge pointwise to the boundary values at every point on T, we must establish
convergence in the sup norm. Unfortunately, since T does not contain all of its limit
points,

IUII= sup IU(P) (47)
UeC(T)

PeT

may not exist for every function U(P)eC(T). On the other hand, S does contain all of
its limit points, the relationship

IIU I = sup IU(P) (48)
UeC(S)

PeS

does exist, and C(S) is complete with respect to this norm. Now G(PO P)eC(S), since
P1 eV. Later it will be proven that U(PO)eC(S) implies that (LU)(PO)eC(S). Note that
since we are interested only in the functional behavior of U(P0, P) at P0 , and not at the
fixed source point P1 , we have omitted the P variable. For small values of k it will also
be shown that IILII< 1 with respect to the norm in Eq. (48). Thus for these values of k,
the Neumann series

U=2 LnG
n=0

converges pointwise to the solution of the boundary value problem for PeT.

Now we discuss the problem corresponding to the line source. Let A be a plane
perpendicular to the z axis and intersecting the line source at the point P1 . Let C(SnA)
denote the space of complex continuous functions, bounded and continuous as P0 tends
to infinity, which is defined on SnA. We will show that the Neumann series

u = 2 Mng
n=o

converges pointwise to the boundary value problem for PeT by first demonstrating that
u(P0 )eC(SnA) implies that (Mu)(P 0 )c(snA) and then by showing that, for small values
of k, IIMII< 1 with respect to the norm,

11
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lull = sup
uEC(SnA)

PeSnA

Iu(P)I. (49)

We note that g(P0 , P1 )eC(SnA) and that C(SnA) is complete with respect to the norm in
Eq. (49).

We now prove the theorem that U(Po)eC(S) implies that (LU)(PoeC(S). To do this
we first establish two lemmas. The analogous result for u can be proven in a similar
manner, and hence after each result we shall merely state the corresponding one for u.
Consider the following.

a (P
Lemma 1. lim a G(P, Po) = ,P2 where p = r2 + 2 and PeS3.-

P-->oc

Now VG =( a G.
ar

r a G. a G) and it can be shown that

n = sin ( - )r - cos ( - )0.

Thus

a a a
- G = sin (2 - A G - cos ( -A \ G.

an Pe" ar Eq. r a

Since PeS3 , r sin ( - ) = a. It follows from Eq. (25) that

(50)

(51)

sin ( - ) a
G = 4irkai cos TO¢q cos TO 0 (2 krO)

Q n=MO m!r(m+Tn+1)
m=0 n=0

and

cos ( - ) a G = - 4rki
r ao Q

where

fsrs2h0$)(kt)
X L + hs)(k) k - - S s h)(kt

Vs+2 S 
(52)

rn sin Tn) cos rfo ( 2 kror)hS (k. )
COS (n - ) L T m!r(m +n + 1) rVs

m=0 n=O
(53)

Tn (n + 1/2)ir

s = 2m +n

=r 2 +r2 +(Z ZO)2 .

From Ref. 13, p. 139, we have that for large 

12
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exp {if 2(s + )]1

h( )(t) _ -. (54)

After Eq. (54) is substituted into Eqs. (52) and (53), it follows from Eq. (51) that

a =(p2)*

Now we give the corresponding result for g.

Lemma 2. lim ag(P, P) 0 where PeS3 flA.

The proof is similar to the one for Lemma 1. We use the representation for g(P, P0 )
given in Eq. (20). From Ref. 13, p. 139, for large values gf p,

HMQ)(t) =42 exp [i(Q - (7Ts/2) - /4)] (56)

The proof of Lemma 4.2 follows from Eq. (56).

Next let us prove Lemma 3.

Lemma 3. lim f an G dS=0().

po* S3

From Lemma 1, it follows that for e>O there exists a compact set 3(C)CS3 such
that

rffn-G dS - G dS < e (57)
S3 S3

where S3 CS3 is any compact set containing S3 (e). Thus

a G dS <e + | a G dS. (58)
S3 S3

From Eqs. (51), (52), and (53), we have

a _ _1(

an G = ~~~~ f(P, PO), ~~(59)

0 0

where f(P, P) is a function, continuous in P, which satisfies the following property
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lim f(P, PO) = 0(l). (60)
Po-*oo

The important feature of f(P, PO) is not its explicit form, but that it satisfies the property
in Eq. (60). Hence,

lim f If(P, P)ldS = 0(l), (61)

PO S3

and from Eqs. (58), (59), and (61) the proof of the lemma follows.

The corresponding result for g is Lemma 4.4.

Lemma 4. lin a 9- ds= 0(
roo fr Ibn gfIr\

Now we establish the following theorem.

Theorem 1. U(PO)eC(S)-(LU)(P 0 )eC(S)

In view of Lemma 3, we need to consider only the case when p0 is finite. Suppose
POeSlUS 2 . Then (alan)G(P, PO)eC(S), and from Lemma 1 it follows that (LU)(PO)eC(S).

Suppose POeS3 . From Lemma 1, it follows that for > 0 there exists a compact
set S3 (e)CS3 such that

a G dS- n G dS <e, (62)

where S3 CS3 is any compact set containing S3 (E). G has a singularity of the type 1IR
at P0 and may be expressed as

G(P, PO) = + V(P, P0 ), (63)

where V(P, P0 ) and its derivative are continuous on S3. Let e > 0 be given. Consider

I(LU)(Po) - (LU)(P')l = T U(P) an (P - dS
S3

+ f U(P) [V(PPO)-V(P, P')]dS (64)
S3

+ U (P) a- [G(P, PO) - G(P, P')]dS

where S3 CS3 is a compact set which satisfies
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T U(P) a (G(P, P0 ) - G(P, P))dS < (65)
S3-S3 

It follows immediately from Eq. (62) that such a set S3 exists, and we may assume that
S3~~~~~~~~~~~~~~~~~S3contains a neighborhood of P0 , for if not, a set S*3 containing S3 and some neighbor-

hood of P0 may be chosen. Since V is continuous, it follows that there exists a 6 > 0
such that IPO - P'I< 6 implies that

1 f U(P) an [V(PPo)-V(PP')]ds < j (66)
S 3

It is well known (e.g., Ref. 19, p. 157) that the kernel of integrals of the form

LU=- 2- f U(P) -dS (67)
27r S3 anp R

has weak singularity, i.e., (a/an)(1/R)l < (C/R 2 -,), where 0 < < 1 and C is some
constant. It is also known (Ref. 19, p. 115) that an operator with a weakly singular
kernel whose domain of integration is a compact set in m-dimensional Euclidean space is
completely continuous and hence continuous. Thus there is a 2 > 0 such that
P0 - P'I 2 implies

12 J U(P) an (p-p 0 ! l pwl)dS < 3 * (68)
S3

Take = min (1, 2) It follows from Eqs. (64), (65), (66), and (68) that for
PO - P I < 6,

I(LU)(Po) - (LU)(P')I< e,

and hence (LU)(P 0 )CC(S).

Similarly, we may prove the following theorem.

Theorem 2.2. u(Po)eC(SnA)=>(Mu)(PO)eC(SrlA).

It remains to be demonstrated that for small values of k, I IL Il< 1 with respect to
the norm in Eq. (48) and that IIMII< 1 with respect to the norm in Eq. (49). Since the
argument is the same in both cases, we shall give only the one for L and merely state the
corresponding results for M. From Ref. 13, pp. 66 and 80, we have



11/2: (k02s

h~l) (k~)= (J(k 2m+rn+1/2 1)S \2/ (69)
2 m \'kr k2) /sr2 + Tn+ 3/2)

21 ~2m+,rn+1/2 .
+ it2m | (1 -t2) 2m+rn sin (ktt)dt

2)~~~2

r(2m + n + 1) 2 J

|)ek t(j + t2)2m+rndt t

We see that the spherical Hankel function has a factor of k2m +*n; i.e.,

h(2m (k ) = k 2 m+-TnA(Q), (70)

where A(Q) is some function with terms of k of order > 0. Now Tn = (n + 1/2)7r/E2, and
from Eq. (69) we see that k' /2 2 is a factor of each h(2l)+r (kt). Thus from Eq. (25), we
see that G has a factor of k1+1r2 , and L may be expressed as

LU = k 1 I+7r /2 L* U, (71)

where L* is an operator whose kernel involves terms of k of order greater than or equal
to zero. Thus I ILI < 1 is valid for small values of k, provided it can be shown that L is a
bounded operator, which is demonstrated below. Similarly, by using the representation
for g in Eq. (20) we can show that

Ir

Mu = k2 nM*u, (72)

and for small values of k, IIMII< 1 with respect to the norm in Eq. (49).

Here we demonstrate that L is a bounded operator, and we could use similar argu-

ment to show that M is bounded. From Eq. (43) it follows that

(LU)(Po) |< 27r lan |d.(3

S3

Consider the integral J | G dS. SupposeP 0 eS1US2 . Then a G is continuous,

S3

hence f |-. G dS is continuous, and from Lemma 3 this integral is equal to zero as

S3

P0 tends to infinity. It follows that the integral may be bounded by some constant C; i.e.,

a G dS<C for POeSlUS2. (74)

S3

16 JOHN F. AHNER
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Suppose POeS3. From Lemma 3 we have that lim
P-*o s

| G dS = 0. Thus suppos

Po<. As in Theorem 1 it may be argued that for e>O there exists a compact set
S3 (e)CS3 such that

3 -lan G dS<e3- Ia3

17

e~~~ee 7-

4,^1

(75)

for all compact sets 3 in S3 containing S3(e). Further, we may suppose that 53 con-
tains a neighborhood of P0. If we express G as

G = 1 + V(P, Po),

where V(P, P0 ) and its derivative are continuous on S3 , it follows that
bounded by some constant C. Consider the integral 3

a 1 dS.

f an Ppold

From the convexity of 3 it can be shown that

(76)

a V dS is

(77)

a I = 1 a 1
an IP - 0 I an [P-P 01 (78)

Thus the integral in Eq. (77) is of the type in Eq. (67). Such operators are completely
continuous, and it is known (e.g. Ref. 19, p. 117) that they are bounded. Thus it is seen

that for PeS 3 , Ila G] dS is bounded and from Eq. (75), since e does not depend on
S3

PO it follows that G dS is uniformly bounded by some constant C. Thus for
S3

and P in S, the integral in Eq. (73) is bounded by a constant, and from Eq. (73) it
follows that

l(LU)(P 0 )I<CIIUl. (79)

Since this is true for any PO eS, it follows that

I IL UIlSC I UL I,

and hence L is bounded.



JOHN F. AHNER

SUMMARY AND CONCLUSIONS

In this report the mixed boundary value problem for the Helmholtz equation,
formally stated in Eq. (26), is considered in the composite region formed by the intersec-
tion of a wedge and two parallel plates. Both cases, a line source and a point source, are
discussed for the incident field. The problem is reformulated via Green's identities, where
instead of the traditional choice of the free-space Green's function as the kernel function,
the Green's function for the corresponding wedge region is used. If the free-space
Green's function were used as the kernel function, the following boundary integral equa-
tion would be obtained via Green's identities:

2 U(P0) P 1) - G(P1 , P) -y J G(P, P0 ) nU(P, P)dSp (80)
2 47r ~~~ ~~Si n

1 r ~~~a_ i g U(P, Pi) -a Go(PPO)dSp,
S 2 uS3

where Go(P1 , P0 ) is the three-dimensional, free-space Green's function; P1 eV; and P is
on a smooth portion of S; i.e., P0 is not on one of the vertices of S. If the Green's
function G(P, PO) for the wedge region is used as the kernel function, the following in-
tegral equation is obtained through Green's identities;

2U(Po, Pi) -G(Pl, PO) f 3 U(P, ) Gan .)yp (81)
2 47r ~~~ ~~S3 n

where G is given explicitly in Eq. (25).

Although the kernel function in the integral equation in Eq. (80) is extremely
simple in form, nevertheless it is doubtful that the integral equation can be solved either
by matrix inversion or by iteration. On the other hand, it is proven in this report that
the solution to the integral equation in Eq. (81) may be expressed as a Neumann series,
which converges for sufficiently small values of k; and in fact, at least theoretically, the
solution may be obtained to any degree of accuracy desired. From a comparison of the
regions of integration of Eqs. (80) and (81), we see that the one in Eq. (80) is consider-
ably more simple. Also, the second integral equation is in a form which lends itself to
matrix inversion. Once the total field U(P0, P1) is known for POCS3 , it follows from the
integral representation in Eq. (31) that it is known everywhere in V. Certainly the kernel
function G(P, PO) is somewhat complicated and presents numerical problems; however,
for small values of the wave number, it can be reasonably approximated.
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